Projects
Proposed Projects
Project Title:
Super-resolution Fluorescence Microscopy
Supervisor(s):
Abstract:

Super-resolution fluorescence microscopy is considered the next step in imaging of the sub-cellular dynamics of living cells. The 2014 Nobel Prize was awarded to the PALM and STED methods for achieving 10X sub-diffraction resolution.

In this project we will develop new super-resolution techniques, applied to state-of-the-art microscopy imaging modalities in order to achieve high spatio-temporal resolution of living sub-cellular processes.

The project is a joint collaboration with Prof. Michal Irani from the Weizmann institute and leading researchers in microscopy.

Description:
Project Title:
Signal Processing on Graphs: Deep Networks
Supervisor(s):
Abstract:

Recent years have shown an increased interest in the use of traditional signal processing methods and operations on signals defined over the nodes of a graph.

In this project we explore the meaning of deep networks over graphs with the aim to extend traits of deep networks to graph signals.

Project Title:
A Signal Processing Perspective on Deep Learning
Supervisor(s):
Abstract:

Deep neural networks have shown remarkable performance in many tasks over the past few years.

However, many of the theoretical issues regarding training, choice of nonlinearity, exploiting structure and more are not yet well understood.

In this project, we will investigate some of these issues and explore their applications in various signal processing tasks.

Description:
Project Title:
מודלים סטוכסטיים לאוכלוסיית הנויטרונים בכור גרעיני
Supervisor(s):
Abstract:

הבנת ההתנהגות הסטוכסטית של אוכלוסיית הנויטרונים בכור גרעיני הינה ראשונה במעלה לצורך תפקודו היעיל. מטרת הפרויקט היא לחקור גישה חדשה למידול האוכלוסיה אשר מבוססת על רעש לבן ומשוואות דיפרנציאליות. יתרון הגישה הוא האפשרות לטיפול אנליטי. בשלבים הראשונים יידרש ללמוד רקע אשר כולל תאוריה של תהליכי הסתעפות, תהליכי דיפוזיה ומשוואות פוקר־פלנק. השלב המחקרי יתמודד עם שאלות של טיב הגישה המוצעת, כיצד לתכנן חוג משוב יעיל, ולאילו גדלים ניתן למצא נוסחאות מפורשות.

מנחה שותף: ד"ר חן דובי, הקריה למחקר גרעיני

Project Title:
Hybrid Memristor-CMOS Logic
Supervisor(s):
Abstract:

Memristors are novel circuit elements that can be used both as memory devices and as building blocks in electronic circuits. This project aims to design logic gates and digital circuits, where memristors are combined with CMOS transistors. These circuits will have higher area efficiency and therefore they have the potential to go beyond Moore's law.

Project Title:
Memristive Cellular Neural Networks
Supervisor(s):
Abstract:

Cellular neural networks (CNN) are a parallel computing paradigm similar to neural network with the difference that communication is allowed between neighboring units only. CNN are attractive for applications such as image processing, biological vision, solving partial differential equations and more.

In this project, memristors, novel circuit elements, will be used in CNN to exploit their capability to combine learning and memory together. Memristive CNN can outperform conventional CNN with significant better area efficiency.

Project Title:
Binary-Weighted Neural Networks
Supervisor(s):
Abstract:

Memristors are novel circuit elements typically used as memory devices. Memristors can also be used in artificial neural networks mostly to store the weight of a synapse. The target of this project is to use memristors as binary weighted elements and investigate the appropriate design of them that can be used to efficiently execute various machine learning algorithms.

Project Title:
De-reverberation for Automatic Speech Recognition
Supervisor(s):
Abstract:

Speech signal processing technologies, which have made significant strides in the last few decades, now play various important roles in our daily lives. For example, speech communication technologies such as (mobile) telephones, video-conference systems, and hearing aids are widely available as tools that assist communication between humans. Speech recognition technology now enables a wide spectrum of innovative and exciting voice-driven applications. However, most of these applications consider a microphone located near the talker as a prerequisite for reliable performance, which prevents further proliferation. In this project, we explore the challenging problem of reverberation. Can one use distant microphones to capture speech and still obtain good automatic speech recognition (ASR) performance?

Project Title:
What is important in an image?
Supervisor(s):
Abstract:

Given an image, parts of it attract our immediate attention - these are the important, or the "salient", parts. A fundamental challenge in computer vision is the detection of the salient pixels automatically. In the attached image, these are the white areas. New 3D cameras pose a new challenge - given a set of of points, can we detect the salient points automatically? In this project we wish to study the relation between the two problems: 2D saliency detection that is based on colors and 3D saliency detection that is based on geometry.

Project Title:
Seeing the invisible
Supervisor(s):
Abstract:

We work on the reconstruction of the internal structure of thick objects that cannot be seen directly, using new time of flight imaging technologies, combined with new optimization algorithms.

Project Title:
Novel Display Technology
Supervisor(s):
Abstract:

We will work on the development of cool cutting edge display technologies capable of displaying 3D data without glasses, reproducing highlights and reacting to illumination. We will use modern tools in computer vision, computer graphics and image processing.

Project Title:
Evaluation of gallium nitride transistors as neuromorphic devices
Supervisor(s):
Abstract:

Neuromorphic devices emulate some aspects of neuron activity, for future hardware based neural networks. Examples are memristors and FLASH devices.

Within the project electron trapping in gallium nitride transistors will be evaluated as a new technology for neuromorphic devices. Based on the experimental results, improved devices will be designed, fabricated, and tested.

Description:
Project Title:
Routing Algorithms for Energy Harvesting Tag Networks (EnHANTs)
Supervisor(s):
Abstract:

The purpose of the research project is to investigate the HDR protocol and to evaluate its performance. Our goal here is to extend and adapt the algorithm to larger topologies and configurations and to investigate its performance via a comprehensive simulation program. The research project will be performed in collaboration with Prof. Gil Zussman from Columbia University.

-- Find more info in the PDF file --

Description:
Project Title:
Algorithm for Characterizing Blinks by The Eyelid Motion Monitor
Supervisor(s):
Abstract:

We developed a novel device that allows quantifying and characterizing the eyelid motion using magnetic field. Thereby, facilitates diagnosing neurological diseases and medication effects.

The goal of this project is to identify blinks and extract parameters (such as energy, frequency and velocity) in order to characterize the eyelid motion. In the framework of the project we will analyze clinical data collected by doctors from Emek Medical Center in Afula.


Project Title:
פוטונים ואור בסיבים ותופעות עיבוי איתם
Supervisor(s):
Abstract:

נתגלה לאחרונה שלאור ופוטונים בסיבים ומהודים אופטיים יש תופעות תרמיות ועיבוי מיוחדות (קונדנסצית בוז-איינשטיין). אנו עוסקים בחקירת התופעות הללו .

מטרת הפרויקט הזה הוא בניית פלטפורמה של סיבים אופטיים וחקירת התופעות שתאפשרנה את העיבוי של הפוטונים.

Project Title:
סריגי בראג מיוחדים בסיבים אופטיים
Supervisor(s):
Abstract:

סריגים בסיבים אופטיים הם רכיבים מרכזיים בתחום של התקשורת האופטית עבור צרכים של סינון וניתוב של אור בסיבים, וכן עבור יצירת לייזרי סיבים ועוד.

אנו לומדים ויוצרים סיבים כאלו במעבדה ומשתמשים בהם לצרכים שונים.

מטרת הפרויקט הוא ליצר ולפתח סריגים מורכבים מיוחדים לצרכי לייזרים חזקים בסיבים אופטיים.

הפרויקט הוא במסגרת המחקר שלנו אבל יכול גם להתכוון ליעדי מחקר משותף עם תעשיות בקונסורציום שמפתח לייזרי סיב מאוד חזקים.

Project Title:
Experimental ultrafast control of angle-resolved Valleytrnoics in 2D-materials
Supervisor(s):
Abstract:

Preliminaries: Physics 3 (mandatory), EE or Physics Solid State course (in parallel)
Theoretical background:
Valleytronics is one of the modern fields in emerging electronics which employs valley degree of freedom and spin in certain two dimensional materials for information exchange.
2D-materials are sometimes referred as layered materials having thickness of a single or few atomic layer(s). The laws of quantum mechanics govern electron transport between valleys.
The main goal of the project is to investigate exciting properties of monolayers and their applications in the field of quantum information. A powerful laser generates short 2 pico-second pulses, making investigation of ultrafast electron dynamics possible.

-- Find more info in the PDF file --

Description:
Project Title:
Fabrication of a High Temperature Superconducting Light Emitting Diode (SLED)
Supervisor(s):
Abstract:

Preliminaries: Physics 3 (mandatory), EE or Physics Solid State course (in parallel)
heoretical background:T
High Temperature Superconducting Light Emitting Diode (SLED) is the combination of an unconventional superconductor (with a high critical temperature Tc 80K) and a light emitting diode. Together, these materials form a unique device capable of producing entangled photons.
The main goal of the project is to fabricate and characterize a superconducting diode. The unique combination of those materials has not been investigated yet. Therefore, students have an opportunity to contribute to the field of superconductors and discover various applications in quantum information and computing....

-- Find more info in the PDF file --

Description:
Project Title:
Experimental ultrafast control of angle-resolved Spintronics in topological insulators
Supervisor(s):
Abstract:

Preliminaries: Physics 3 (mandatory), EE or Physics Solid State course (in parallel)
Theoretical background:
loys pd physics which emhot new field in applie ais Spintronicsspins instead of electric charge for information exchange and processing.
Topological insulators (TI) constitute a new phase of matter with an insulating interior and a conductive surface. Electrons on the surface of TI have locked spin-momentum direction and almost linear (relativistic) dispersion enabling many interesting physical phenomena and direct applications to such fields as spintronics, condensed matter physics, photonics and many more. The material under investigation in this project is a representative of the TI family - bismuth selenide (Bi2Se3).

-- find more info in the PDF file --

Description:
Project Title:
Early detection of COPD seizure
Supervisor(s):
Abstract:

Chronic Obstructive Pulmonary Disease (COPD) is an umbrella term used to describe progressive lung diseases including emphysema, chronic bronchitis, refractory (non-reversible) asthma, and some forms of bronchiectasis. This disease is characterized by increasing breathlessness.

In this project we’ll develop a machine learning based method, using recording of breath sound (audio) from a mobile device in order to get a fast alarm of a coming seizure.

Description:
Project Title:
Registration of Point Clouds for 3D Modeling
Supervisor(s):
Abstract:

Registration plays an important role in 3D data processing. In the 3D domain, data is usually represented as a cloud of 3D points. The data of each such point cloud is given in its own coordinate system. The goal of registration is to find a transformation that optimally positions that data with respect to another point cloud. This is an important stage in solving many 3D problems such as 3D acquisition, where multiple views of an object need to be brought into a common coordinate system.

Description:
Project Title:
Sinkholes Location in a the Dead Sea
Supervisor(s):
Abstract:

Sinkholes are very common in the Dead Sea area and are a cause of serious hazards as they appear very suddenly and can be very large. They mainly endanger those who travel along the road parallel to the Dead Sea (Road #90), the residents of the Ein Gedi Kibbutz and tourists in the southern part of the Dead Sea. It is therefore very important to accurately know the location of all sinkholes in the region.

In this project we will use a novel technique to locate the sinkholes. The technique is based on the measurement of the subsurface resistivity of the region being mapped. The resistivity depends on various geological parameters such as the mineral and fluid content, porosity and degree of water saturation in the rock. A complete resistivity map will allow accurate location of all sinkholes.

-- Experimental aspect is also included.--

Project Title:
Electron Accelerator for Medical Applications
Supervisor(s):
Abstract:

The large size and very high cost of modern radiotherapy medical devices used for cancer treatment are mainly due to the dimensions of the electron accelerator. Acceleration techniques in use today require the electron accelerator to be about one meter in length in order to produce radiation with sufficient energy for radiotherapy.

The goal of the project is to develop a small, portable device that can be placed within a tumor site using standard endoscopic methods; allowing it to deliver the same radiation dose provided by current external beam technologies, without damaging surrounding tissue.

Using laser to accelerate electrons to very high energies, we will explore various acceleration structures and the dynamics of the electrons. Also, we assess the possibility of generation of stimulated X-ray by Compton scattering.

Projects:  Proposed ProjectsArchive Projects
 
Copyright © 2015 by EMET. All rights reserved.